Prediction with Classification to Nearest Centroids classifier
clanc.predict.Rd
Predict from a Classification to Nearest Centroids classifier fit.
Arguments
- clanc.intcv.model
a Classification to Nearest Centroids classifier built with
clanc.intcv
.- pred.obj
dataset to have its sample group predicted. The dataset must have rows as probes and columns as samples. It must have an equal number of probes as the dataset being trained.
- pred.obj.group.id
a vector of sample-group labels for each sample of the dataset to be predicted. It must have an equal length to the number of samples as
pred.obj
.
Value
a list of 3 elements:
- pred
predicted sample group for each sample
- mc
a predicted misclassification error rate (external validation)
- prob
predicted probability for each sample
References
Alan R. Dabney, Author Notes.(2005) ClaNC: point-and-click software for classifying microarrays to nearest centroids, https://academic.oup.com/bioinformatics/article/22/1/122/219377
Examples
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect) %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.test.ind <- colnames(biological.effect.nc)[!colnames(biological.effect.nc) %in% biological.effect.train.ind]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
biological.effect.nc.te <- biological.effect.nc[, biological.effect.test.ind]
clanc.int <- clanc.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1)
#> CV:12345
clanc.pred <- clanc.predict(clanc.intcv.model = clanc.int,
pred.obj = biological.effect.nc.te,
pred.obj.group.id = substr(colnames(biological.effect.nc.te), 7, 7))
clanc.int$mc
#> [1] 0.1796875
clanc.pred$mc
#> [1] 0.15625