Function reference
-
amplify.handling.effect() - Handling effect amplification
-
blocking.design() - Blocking Design
-
calc.confounding.level() - Level of confounding calculation
-
clanc.intcv() - Classification to Nearest Centroids Classifier
-
clanc.predict() - Prediction with Classification to Nearest Centroids classifier
-
confounding.design() - Confounding Design
-
create.storage() - Create Storage for Output
-
dlda.intcv() - Diagonal Linear Discriminant Classifier
-
dlda.predict() - Prediction with Diagonal Linear Discriminant classifier
-
estimate.biological.effect() - Estimated Sample Effects
-
estimate.handling.effect() - Estimated handling effects
-
extract.precision.error() - Extracting errors from PRECISION (both non-FLEX and FLEX) output
-
knn.intcv() - K-Nearest Neighbors Classifier
-
knn.predict() - Prediction with K-Nearest Neighbors classifier
-
lasso.intcv() - Least absolute shrinkage and selection operator through internal cross validation
-
lasso.predict() - Prediction with least absolute shrinkage and selection operator classifier
-
limma.pbset() - Differential expression analysis of probe-set data
-
med.norm() - Median normalization
-
med.sum.pbset() - Probe-set median summarization
-
nuhdata.pl - The nonuniformly-handled probe-level dataset, 10 probes for each unique probe
-
pam.intcv() - Nearest shrunken centroid through internal cross validation
-
pam.predict() - Prediction with nearest shrunken centroid classifier
-
per.unipbset.truncate() - Probe-level data truncation to a fixed number of probes per unique probe-set
-
plot(<precision.multiclass>) - plot.precision.multiclass
-
plot(<precision>) - Plot misclassification error rates from PRECISION (both non-FLEX and FLEX) output
-
precision(<simulate.class>) - precision simulation with classification
-
precision(<simulate.multiclass>) - precision simulation with multi-classification
-
precision(<simulate>) - Classification analysis of simulation study
-
quant.norm() - Quantile normalization
-
ranfor.intcv() - Random Forest Classifier
-
ranfor.predict() - Prediction with random forest classifier
-
reduce.signal() - Biological signal reduction
-
rehybridize() - Virtual rehybridization with an array-to-sample assignment
-
stratification.design() - Stratification Design
-
svm(<intcv>) - Support Vector Machine Classifier
-
svm(<predict>) - Prediction with support vector machine classifier
-
switch.classifier.funcs.class() - Switch classfication functions
-
switch.classifier.funcs() - Switch classfication functions
-
switch.norm.funcs.flex() - Switch normalization funcsions in a flexible way
-
switch.norm.funcs() - Switch Normalization Functions
-
tabulate.ext.err.func() - Tabulate.ext.err.func
-
uhdata.pl - The uniformly-handled probe-level dataset, 10 probes for each unique probe
-
uni.handled.simulate() - Classification analysis of uniformly-handled data
-
vs.norm() - Variance stabilizing normalization