Skip to contents

All functions

amplify.handling.effect()
Handling effect amplification
blocking.design()
Blocking Design
calc.confounding.level()
Level of confounding calculation
clanc.intcv()
Classification to Nearest Centroids Classifier
clanc.predict()
Prediction with Classification to Nearest Centroids classifier
confounding.design()
Confounding Design
create.storage()
Create Storage for Output
dlda.intcv()
Diagonal Linear Discriminant Classifier
dlda.predict()
Prediction with Diagonal Linear Discriminant classifier
estimate.biological.effect()
Estimated Sample Effects
estimate.handling.effect()
Estimated handling effects
extract.precision.error()
Extracting errors from PRECISION (both non-FLEX and FLEX) output
knn.intcv()
K-Nearest Neighbors Classifier
knn.predict()
Prediction with K-Nearest Neighbors classifier
lasso.intcv()
Least absolute shrinkage and selection operator through internal cross validation
lasso.predict()
Prediction with least absolute shrinkage and selection operator classifier
limma.pbset()
Differential expression analysis of probe-set data
med.norm()
Median normalization
med.sum.pbset()
Probe-set median summarization
nuhdata.pl
The nonuniformly-handled probe-level dataset, 10 probes for each unique probe
pam.intcv()
Nearest shrunken centroid through internal cross validation
pam.predict()
Prediction with nearest shrunken centroid classifier
per.unipbset.truncate()
Probe-level data truncation to a fixed number of probes per unique probe-set
plot(<precision.multiclass>)
plot.precision.multiclass
plot(<precision>)
Plot misclassification error rates from PRECISION (both non-FLEX and FLEX) output
precision(<simulate.class>)
precision simulation with classification
precision(<simulate.multiclass>)
precision simulation with multi-classification
precision(<simulate>)
Classification analysis of simulation study
quant.norm()
Quantile normalization
ranfor.intcv()
Random Forest Classifier
ranfor.predict()
Prediction with random forest classifier
reduce.signal()
Biological signal reduction
rehybridize()
Virtual rehybridization with an array-to-sample assignment
stratification.design()
Stratification Design
svm(<intcv>)
Support Vector Machine Classifier
svm(<predict>)
Prediction with support vector machine classifier
switch.classifier.funcs.class()
Switch classfication functions
switch.classifier.funcs()
Switch classfication functions
switch.norm.funcs.flex()
Switch normalization funcsions in a flexible way
switch.norm.funcs()
Switch Normalization Functions
tabulate.ext.err.func()
Tabulate.ext.err.func
uhdata.pl
The uniformly-handled probe-level dataset, 10 probes for each unique probe
uni.handled.simulate()
Classification analysis of uniformly-handled data
vs.norm()
Variance stabilizing normalization