Function reference
-
amplify.handling.effect()
- Handling effect amplification
-
blocking.design()
- Blocking Design
-
calc.confounding.level()
- Level of confounding calculation
-
clanc.intcv()
- Classification to Nearest Centroids Classifier
-
clanc.predict()
- Prediction with Classification to Nearest Centroids classifier
-
confounding.design()
- Confounding Design
-
create.storage()
- Create Storage for Output
-
dlda.intcv()
- Diagonal Linear Discriminant Classifier
-
dlda.predict()
- Prediction with Diagonal Linear Discriminant classifier
-
estimate.biological.effect()
- Estimated Sample Effects
-
estimate.handling.effect()
- Estimated handling effects
-
extract.precision.error()
- Extracting errors from PRECISION (both non-FLEX and FLEX) output
-
knn.intcv()
- K-Nearest Neighbors Classifier
-
knn.predict()
- Prediction with K-Nearest Neighbors classifier
-
lasso.intcv()
- Least absolute shrinkage and selection operator through internal cross validation
-
lasso.predict()
- Prediction with least absolute shrinkage and selection operator classifier
-
limma.pbset()
- Differential expression analysis of probe-set data
-
med.norm()
- Median normalization
-
med.sum.pbset()
- Probe-set median summarization
-
nuhdata.pl
- The nonuniformly-handled probe-level dataset, 10 probes for each unique probe
-
pam.intcv()
- Nearest shrunken centroid through internal cross validation
-
pam.predict()
- Prediction with nearest shrunken centroid classifier
-
per.unipbset.truncate()
- Probe-level data truncation to a fixed number of probes per unique probe-set
-
plot(<precision.multiclass>)
- plot.precision.multiclass
-
plot(<precision>)
- Plot misclassification error rates from PRECISION (both non-FLEX and FLEX) output
-
precision(<simulate.class>)
- precision simulation with classification
-
precision(<simulate.multiclass>)
- precision simulation with multi-classification
-
precision(<simulate>)
- Classification analysis of simulation study
-
quant.norm()
- Quantile normalization
-
ranfor.intcv()
- Random Forest Classifier
-
ranfor.predict()
- Prediction with random forest classifier
-
reduce.signal()
- Biological signal reduction
-
rehybridize()
- Virtual rehybridization with an array-to-sample assignment
-
stratification.design()
- Stratification Design
-
svm(<intcv>)
- Support Vector Machine Classifier
-
svm(<predict>)
- Prediction with support vector machine classifier
-
switch.classifier.funcs.class()
- Switch classfication functions
-
switch.classifier.funcs()
- Switch classfication functions
-
switch.norm.funcs.flex()
- Switch normalization funcsions in a flexible way
-
switch.norm.funcs()
- Switch Normalization Functions
-
tabulate.ext.err.func()
- Tabulate.ext.err.func
-
uhdata.pl
- The uniformly-handled probe-level dataset, 10 probes for each unique probe
-
uni.handled.simulate()
- Classification analysis of uniformly-handled data
-
vs.norm()
- Variance stabilizing normalization