Prediction with least absolute shrinkage and selection operator classifier
lasso.predict.Rd
Predict from a least absolute shrinkage and selection operator fit.
Arguments
- lasso.intcv.model
a LASSO classifier built with
lasso.intcv
.- pred.obj
dataset to have its sample group predicted. The dataset must have rows as probes and columns as samples. It must have an equal number of probes as the dataset being trained.
- pred.obj.group.id
a vector of sample-group labels for each sample of the dataset to be predicted. It must have an equal length to the number of samples as
pred.obj
.
Value
a list of 3 elements:
- pred
predicted sample group for each sample
- mc
a predicted misclassification error rate (external validation)
- prob
predicted probability for each sample
References
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Mod- els via Coordinate Descent, http://www.stanford.edu/~hastie/Papers/glmnet.pdf Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
Examples
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect) %in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.test.ind <- colnames(biological.effect.nc)[!colnames(biological.effect.nc) %in% biological.effect.train.ind]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
biological.effect.nc.te <- biological.effect.nc[, biological.effect.test.ind]
lasso.int <- lasso.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1, alp = 1)
#>
lasso.pred <- lasso.predict(lasso.intcv.model = lasso.int,
pred.obj = biological.effect.nc.te,
pred.obj.group.id = substr(colnames(biological.effect.nc.te), 7, 7))
lasso.int$mc
#> [1] 0.1484375
lasso.pred$mc
#> [1] 0.15625