Diagonal Linear Discriminant Classifier
dlda.intcv.Rd
Build a Diagonal Linear Discriminant classifier.
Arguments
- kfold
placeholder with no meaning, default as NULL.
- X
dataset to be trained. This dataset must have rows as probes and columns as samples.
- y
a vector of sample group of each sample for the dataset to be trained. It must have an equal length to the number of samples in
X
.- seed
an integer used to initialize a pseudorandom number generator.
Value
a list of 4 elements:
- mc
an internal misclassification error rate
- time
the processing time
- model
a DLDA classifier
Examples
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
%in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
dlda.int <- dlda.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = NULL, seed = 1)