Differential expression analysis of probe-set data
limma.pbset.Rd
Perform two-group differential expression analysis using "limma".
Usage
limma.pbset(data, group.id, group.id.level = c("E", "V"), pbset.id = NULL)
Arguments
- data
dataset to be analyzed. The dataset must have rows as unique probe-sets and columns as samples.
- group.id
a vector of sample-group labels for each sample of the dataset. It must be a 2-level non-numeric factor vector.
- group.id.level
a vector of sample-group label level. It must have two and only two elements and the first element is the reference. By default,
group.id.level = c("E", "V")
. That is in our study, we compare endometrial tumor samples to ovarian tumor samples, with endometrial as our reference.- pbset.id
a vector of unique probe-set names. By default,
pbset.id = NULL
for it to be the row names of the dataset.
Value
a data frame with differential expression analysis results, group means and group standard deviations, for each unique probe-set.
References
Ritchie M., Phipson B., Wu D., Hu Y., Law C., Shi W. and Smyth G. (2015). "limma powers differential expression analyses for RNA-sequencing and microarray studies." Nucleic Acids Research, 43(7), pp. e47.
Examples
uhdata.psl <- med.sum.pbset(data = uhdata.pl,
num.per.unipbset = 10)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
uhdata.psl.nc <- uhdata.psl[!rownames(uhdata.psl) %in% ctrl.genes, ]
group.id <- substr(colnames(uhdata.psl.nc), 7, 7)
group.id.level <- levels(as.factor(group.id))
limma.fit.uhdata<- limma.pbset(data = uhdata.psl.nc,
group.id = group.id,
group.id.level = group.id.level)
table(limma.fit.uhdata$P.Value < 0.01,
dnn = "DE genes")
#> DE genes
#> FALSE TRUE
#> 159 16