fig.dendrogram.Rd
Function for clustering normalization methods based on the p-values pattern calculated from the same dataset.
fig.dendrogram(DEA.pval.list, title, subset = NULL)
DEA.pval.list | A list of p-values from differential expression analysis results with the element names to be the normalization methods |
---|---|
title | optional Figure title |
subset | optional Vector of a subset of markers.
If given, the dendrogram analysis will be limited to the given subset
of markers. Leave |
Figure of dendrogram
test.norm <- pip.norm(raw=data.test, groups=data.group, norm.method = "all")
#> converting counts to integer mode
test.DE <- list(
TMM = DE.voom(RC=test.norm$TMM$dat.normed, groups = data.group),
TC = DE.voom(RC=test.norm$TC$dat.normed, groups = data.group),
UQ = DE.voom(RC=test.norm$UQ$dat.normed, groups = data.group),
med = DE.voom(RC=test.norm$med$dat.normed, groups = data.group),
DESeq = DE.voom(RC=test.norm$DESeq$dat.normed, groups = data.group),
PoissonSeq = DE.voom(RC=test.norm$PoissonSeq$dat.normed, groups = data.group),
QN = DE.voom(RC=test.norm$QN$dat.normed, groups = data.group),
RUVg = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVg$adjust.factor),
RUVs = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVs$adjust.factor),
RUVr = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVr$adjust.factor),
SVA = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$SVA$adjust.factor),
noNorm = DE.voom(RC=data.test, groups = data.group))
test.DE.pval <- lapply(1:12, function(x) test.DE[[x]]$p.val)
names(test.DE.pval) <- names(test.DE)
fig.dendrogram(DEA.pval.list = test.DE.pval, title = "Example of dendrogram")