Function for clustering normalization methods based on the p-values pattern calculated from the same dataset.

fig.dendrogram(DEA.pval.list, title, subset = NULL)

Arguments

DEA.pval.list

A list of p-values from differential expression analysis results with the element names to be the normalization methods

title

optional Figure title

subset

optional Vector of a subset of markers. If given, the dendrogram analysis will be limited to the given subset of markers. Leave NULL if all markers should be considered.

Value

Figure of dendrogram

Examples


test.norm <- pip.norm(raw=data.test, groups=data.group, norm.method = "all")
#> converting counts to integer mode
test.DE <- list(
TMM = DE.voom(RC=test.norm$TMM$dat.normed, groups = data.group),
TC = DE.voom(RC=test.norm$TC$dat.normed, groups = data.group),
UQ = DE.voom(RC=test.norm$UQ$dat.normed, groups = data.group),
med = DE.voom(RC=test.norm$med$dat.normed, groups = data.group),
DESeq = DE.voom(RC=test.norm$DESeq$dat.normed, groups = data.group),
PoissonSeq = DE.voom(RC=test.norm$PoissonSeq$dat.normed, groups = data.group),
QN = DE.voom(RC=test.norm$QN$dat.normed, groups = data.group),
RUVg = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVg$adjust.factor),
RUVs = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVs$adjust.factor),
RUVr = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$RUVr$adjust.factor),
SVA = DE.voom(RC=data.test, groups = data.group, normalized=FALSE, adjust=test.norm$SVA$adjust.factor),
noNorm = DE.voom(RC=data.test, groups = data.group))
test.DE.pval <- lapply(1:12, function(x) test.DE[[x]]$p.val)
names(test.DE.pval) <- names(test.DE)

fig.dendrogram(DEA.pval.list = test.DE.pval, title = "Example of dendrogram")